Sematnic Video Clustering across Sources Using Bipartite Spectral Clustering
نویسندگان
چکیده
Data clustering is an important technique for visual data management. Most previous work focuses on clustering video data within single sources. In this paper, we address the problem of clustering across sources, and propose novel spectral clustering algorithms for multisource clustering problems. Spectral clustering is a new discriminative method realizing clustering by partitioning data graphs. We represent multi-source data as bipartite or K-partite graphs, and investigate the spectral clustering algorithm under these representations. The algorithms are evaluated using TRECVID-2003 corpus with semantic features extracted from speech transcripts and visual concept recognition results from videos. The experiments show that the proposed bipartite clustering algorithm significantly outperforms the regular spectral clustering algorithm to capture cross-source associations.
منابع مشابه
A Comparative Study of Spectral Clustering and Information-theoretic Co-clustering for Video Shot Categorization
Automatic categorization of video shots is important in video indexing and retrieval. To improve the effectiveness of video shot categorization, current researchers have addressed two major issues: i) spatio-temporal coherence from shot to shot, and ii) bipartite correlation between descriptive features and shot categories. In recent works, spectral clustering and information-theoretic co-clust...
متن کاملLarge-Scale Spectral Clustering on Graphs
Graph clustering has received growing attention in recent years as an important analytical technique, both due to the prevalence of graph data, and the usefulness of graph structures for exploiting intrinsic data characteristics. However, as graph data grows in scale, it becomes increasingly more challenging to identify clusters. In this paper we propose an efficient clustering algorithm for la...
متن کاملLarge-Scale Multi-View Spectral Clustering via Bipartite Graph
In this paper, we address the problem of large-scale multi-view spectral clustering. In many real-world applications, data can be represented in various heterogeneous features or views. Different views often provide different aspects of information that are complementary to each other. Several previous methods of clustering have demonstrated that better accuracy can be achieved using integrated...
متن کاملSpectral Co-Clustering for Dynamic Bipartite Graphs
A common task in many domains with a temporal aspect involves identifying and tracking clusters over time. Often dynamic data will have a feature-based representation. In some cases, a direct mapping will exist for both objects and features over time. But in many scenarios, smaller subsets of objects or features alone will persist across successive time periods. To address this issue, we propos...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کامل